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SUMMARY 

One of the parameters that must be known to determine the operating temperature of 
fuel elements in a nuclear reactor is the thermal conductivity of the material. When the 
material is a dispersion (fuel particles imbedded in a matrix of a second material), the 
determination of the thermal conductivity without extensive experimentation is difficult 
because of the complex parameters involved. 

tems, were examined and each w a s  found to be valid over certain ranges. Unfortunately, 
much of the work being done on tungsten - uranium dioxide is in a region that is not spe- 
cifically covered by any of the models; however, because of the similarity between two of 
the analytical models, a method which in essence allows extrapolation into this region is 
suggested. Comparison with experimental values shows that the method results in favor- 
able predictions. 

many tungsten - uranium dioxide combinations found in nuclear reactor analyses. 

Several analytical methods, which can be used to predict the conductivity in such sys- 

Data were then generated by this method to determine the thermal conductivity of 

INTRODUCTION 

To establish the operating temperature of the fuel elements in a nuclear reactor, it 
is necessary to know the neutron flux distribution, the coolant flow rate and temperature, 
the heat-transfer coefficient, the fuel element geometry, and the physical properties of 
the material that influence the temperature under both steady- state and transient condi- 
tions. Among the properties, the thermal conductivity of the material is essentially the 



. 
controlling factor in determining the difference between the fuel element surface temper- 
ature Tw and the maximum ("centerline") temperature Tmax existing within the mate- 
rial during steady- state operation. Equation (1) expresses this temperature difference 
for a simple, one-dimensional, flat-plate geometry in which the thermal conductivity is 
independent of temperature: 

(Symbols a r e  defined in appendix D . )  

ference is inversely proportional to the thermal conductivity of the fueled material. 
When a fuel element is operating near its maximum allowable temperature, based on 
either mechanical or metallurgical considerations, it becomes extremely important to 
establish the thermal conductivity of the material. 

Many fuel elements a r e  made by melting two or more metals into a composite in 
which the fuel material is homogeneously alloyed with the other metals. In such alloys 
the mechanism of heat transfer by conduction is relatively simple, and the determinatioi 
of the thermal conductivity of the composite alloy can be made with the same techniques 
that a r e  used for pure metals. In general, the thermal conductivity of the alloy at a 
given temperature is only a function (not necessarily linear) of the relative amounts of 
the various materials contained in the composite, and the conductance of such a system 
can be determined by a minimum number of experimental points. 

particles distributed within a matrix of a nonfuel material, the problem of determining 
the thermal conductivity is further complicated by the fact that the composite material 
may have heterogeneous properties. The mechanism of heat conduction in such a systerr 
is more complex than that of an alloy, and the size, shape, and orientation of the parti- 
cles, as well as the relative amount and properties of the material involved, become 
important factors in the determination of the thermal conductivity of the dispersion. 

While it is possible to obtain measurements of the effective thermal conductivity of 
dispersions by the same techniques used for alloys, extrapolation to points that a r e  not 
coincidental with those determined experimentally is difficult because of the additional 
variables (particle size, shape, and orientation) associated with the dispersions. It be- 
comes important, therefore, to understand more fully the exact nature of the conduction 
process for such a material. 

sion fuels and to evaluate such methods by comparison with experimental results. In 
particular, the behavior of tungsten - uranium dioxide dispersions (W-U02) a r e  of major 

2 

For a constant heat-generating rate  Q and plate thickness L the temperature dif- 

For a dispersion fuel in which the heat-generating material consists of individual 

h 

The purpose of this study is to investigate analytical methods applicable to disper- 



concern in the tungsten - water-moderated nuclear rocket reactor program (ref. 1). 

ANALYTICAL METHODS FOR PREDICTING THERMAL CONDUCTIVITY 

In conjunction with the study of electric and dielectric constants, the problem of pre- 
dicting the conductivity of heterogeneous materials has been treated mathematically by a 
variety of investigators. Much of this work has been summarized by Powers (ref. 2) and 
indicates that there are two or three analytical models which are directly applicable to 
dispersion fuels. The first of these is the Rayleigh-Maxwell dilute dispersion equation 
(ref. 2, p. 7): 

1 - 2V (Km - KJ 

Keff = Km 2 K , + K p + V  P Q - K P )  ( 

where Keff is the effective conductivity of the composite. 
Because of the assumptions made in the derivation of this model, equation (2) is only 

applicable for dilute dispersions, where the particle concentration is less than 10 to 
15 volume percent (ref. 2, p. 26). A more general equation for variable dispersions de- 
rived by Bruggeman (ref. 2, p. 10) should be applicable for any concentration. (Theo- 
retically, this statement would only apply up to a concentration of 74.05 volume percent 
since this is the maximum packing density for spheres stacked in a rhombohedral array.) 
The form of the equation for this model is given by equation (3) and was developed by 
first differentiating the Rayleigh-Maxwell equation (eq. (2)) and then by integrating it be- 
tween the appropriate limits. 

Basically, there is little difference between the results obtained by using equa- 
tion (2) and those obtained by using equation (3). This becomes evident when these equa- 
tions are applied to a series of cases where the ratio of the conductivities of the two 
phases varies from 10 to 50. Figures l(a) to  (d) show the result of this study for the 
thermal conductivity of the matrix greater than that of the particle (Km > and also 
when the inverse was true (5 > Km). Figure 2 shows the difference between the two 
models expressed as the ratio of the effective conductivity predicted by the dilute disper- 
sion equation (eq. (2)) to that predicted by the variable dispersion model (eq. (3)). 

9 

3 



(a) Rayleigh-Maxwell di lute dispersion equation for 
thermal conductivity of matrix greater than that 
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.- 0- 

-5 of particle. 

(b) Bruggeman variable dispersion equation for thermal 
conductivity of matrix greater than that of particle. 
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0 40 60 80 loo 0 a0 
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(c l  Rayleigh-Maxwell di lute dispersion equation for 
thermal conductivity of matr ix less t h a n  that of 
particle. 

(d l  Bruggeman variable dispersion equation for thermal  
conductivity of matrix less than that of particle. 

Figure 1. - Effective thermal  conduct iv i ty of dispersions predicted by various models. 

Although the maximum e r ro r  in both cases  is about the same (e. g. , the maximum 
e r ro r  is 50 to 55 percent for a conductivity ratio of 50), it should be noted that the rate 
of disagreement between the two models at low particle concentrations is much greater 
when the conductivity of the particle is higher than that of the matrix (s > Km). For 
example, at a conductivity ratio of 50, a 5-percent difference occurs between the two 
equations at a particle concentration of 36 volume percent when the conductivity of the 
matrix has the higher value; when the conductivity of the particle is higher, a difference 
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Figure 2. - Difference in  effective thermal conductivity 
predicted by dilute and variable dispersion models. 

particle. 

of 23 percent exists at the same concentra- 
tion (36 volume percent). 

beyond the recommended limits of the dilute 
dispersion equation (> lo  to  15 volume per- 
cent), the absolute value of the e r ror  is aca- 
demic and is only important in establishing 
the areas where similarity between the two 
methods would allow the use of either model 
with a minimum error .  The use of this simi- 
larity will be discussed in the next section. 

Because these conditions are actually 

Anisotropic Effects 

The two models described in the previ- 
ous section (eqs. (2) and (3)) are somewhat 
idealized because they are derived for mate- 
rials in which the dispersed particles are 
spherical and the behavior is isotropic in 
nature. Many materials do not always be- 
have in this ideal manner; frequently, the 
particles a r e  elongated in one direction be- 
cause of certain steps in the manufacturing 
process (e. g., rolling a material tends to 
elongate the particles), and the resulting 
properties a re  not isotropic as the models 
for spherical particles indicate. 

Some work has been done on the aniso- 
tropic effects of such particles. A discus- 
sion of the various models is given in refer- 
ence 2 (pp. 12 to 23), and the conclusion 
reached is that, for mathematical treatment, 
all particles can be classified as either pro- 
late (axis A > B = C) or oblate (axis 
A < B = C) ellipsoids, or, as they are some- 
times called, spheroids. 

Anisotropic effects are simulated by 
changing the relative size and orientation of 
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(a) Prolate ellipsoid; 
A > B ;  6 - C .  

(b) Oblate ellipsoid; A < 6; B = C. 

Figure 3. - Part icle shapes used in 
anisotropic analysis. 

1.2 

L O  

. a  - b U (a) Conductivity ratio, 10. 
m - 
c 1.4 

% 

.- u 1. 2 
e 
s 
a 1.0 

0 .- 
c 

L 
L 0 U 

n. - 
.- c 

. a  

6 
0 M 40 60 a0 100 

Particle concentration, volume percent 
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Figure 4. -Var ia t ion of anisotropic correction factor wi th  
several parameters. Conductivity of matr ix greater t han  
that of particle. 

. 
the axes of the ellipsoids with respect to the 
heat flux. A schematic representation of these 
elliptical particles is shown in figure 3. 

Of the various anisotropic models de- 
scribed in reference 2, the one that seems 
most applicable to the dispersion fuel problem 
is the method of Fricke (ref. 2, pp. 18 to 19). 
The equation depicting this model can be sum- 
marized as follows: 

Keff = [' + (x)? - ">3 (4) 
Q - 5  1 - vp 

where f i  is a function of the particle shape 
and orientation. (The formulation of the 
Fricke model and the associated function f i  
for various conditions is shown in appendix A. ) 

In the limit, as the particles become 
spherical in shape, this equation (eq. (4)) re- 
duces to the Rayleigh-Maxwell dilute disper- 
sion equation (eq. (2)). In the other extreme 
(i. e., as the prolate ellipsoids approach long 
cylinders, or the oblate ellipsoids approach 
thin platelets in shape), this equation reduces 
to the appropriate model, several of which 
are discussed in reference 2 (pp. 1 to 18). 

Defining an anisotropic correction factor 
as the ratio of the effective conductivity pre- 
dicted by equation (4) to that predicted by equa- 
tion (2) and applying this definition to a variety 
of cases result in the values shown in figure 4. 
Again it should be noted that the dilute disper- 
sion equation (eq. (2)) is only applicable for 
particle concentrations of less than 10 to 15 
volume percent. 

For the variable dispersion model (eq. 
(3)), the formulation of an anisotropic equa- 
timGimi1ar to equation (4) is not practical 

.* 
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. 
because, according to Powers (ref. 2), the functions "vary with composition as well as 
with ellipsoidal shape and orientation and so, the mathematics would be extremely diffi- 
cult. 7 t  The question that arises then is how to treat those nonspherical particles for 
which the concentrations are greater than those values for which the dilute dispersion 
equations apply. 

When the elongation of the particle becomes extreme, and the particle concentration 
is high enough that contact of adjacent particles occurs, the dispersion equation is no 
longer applicable. A more suitable model is a mixture equation such as the one derived 
by Bruggeman (ref. 2, pp. 9 to 10). This equation applies to the so-called mixtures 
where neither phase is completely surrounded by the other phases. The generalized 
equation for this model, including the anisotropic effects of particle shape and orienta- 
tion, is given by 

where X is defined by 

and P is the same function that was used in equation (4). 

for models ranging from series laminates (X = 0) through spherical particles (X = 2) to 
parallel cylinders (X = m). When the particle concentration exceeds 10 to 15 volume per- 
cent, the applicability of the dilute dispersion equations (eqs. (2) and (4)) is questionable. 
A similar situation occurs for the mixture equation (eq. (5)) when the particles are not 
sufficiently elongated nor of sufficient concentration to cause interaction (contact) between 
particles. 

is the concentration limit of 10 to 15 volume percent in the dilute dispersion equation be- 
cause it is a function of both the elongation and the concentration. Figure 5 shows typical 
photomicrographs of W-U02 dispersions being considered for fuel plates in the tungsten - 
water-moderated nuclear rocket reactor. In general, each U 0 2  particle is completely 
surrounded by the tungsten matrix; and, because the concentration is greater than the 
previously established limit of 10 to 15 volume percent, this material falls into the area 
between the dilute dispersion model (eqs. (2) and (4)) and the mixture model (eq. (5)). 

As the value of X varies from zero to infinity, equation (5) represents the equation 

The boundaries loosely described by the above statement are not as well defined as 
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90 Tungsten - 10 u r a n i u m  dioxide 

70 Tungsten - 30 uran ium dioxide 

80 Tungsten - M u r a n i u m  dioxide 

60 Tungsten - 40 u r a n i u m  dioxide 

(a) Perpendicular to rol l ing direction. 

90 Tungsten - 10 uran ium dioxide 80 Tungsten - 20 uran ium dioxide 

70 Tungsten - 30 uran ium dioxide 60 Tungsten - 40 u r a n i u m  dioxide 

( b )  Parallel to rol l ing direction 

Figure 5. - Microstructure Of tUflgSfen - u r a n i u m  dioxide plates of various fuel loadings. Composition by volume 
percent. 
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Unfortunately, in this region between the models, the mathematics for an anisotropic 
form of the variable dispersion equation becomes extremely difficult (ref. 2, p. 21). 
Careful examination of the values shown in figure 1 (p. 4) indicates that the predicted 
conductivity for spherical particles, when either the variable dispersion equation (eq. (3)) 
or the dilute dispersion equation is used, is quite similar for concentrations of less than 
40 volume percent if  the conductivity of the matrix is greater than that of the particles 
(i. e. , K ~ / $  > 1.0). 

methods does not vary by more than 6 percent. It is conceivable, if not probable, that 
such a relation would also exist i f  an anisotropic variable dispersion equation were avail- 
able to compare with equation (4). 

Because the W-U02 fuel material falls into this restrictive category, that is, parti- 
cles which are slightly elongated with Q/K > 1 and 10 < V < 40 volume percent, it 
is suggested that the following method be used to determine the effective thermal conduc- 
tivity in this range: 

dispersion model (eq. (3)) and by assuming that the particles are spherical. 

predicted by equations (2) and (4). 

the value obtained from equation (3) with the anisotropic correction factor. 

variable dispersion model is similar to that of the dilute dispersion model and in effect 
results in a thermal conductivity that can be expressed as the variable dispersion value 
times a shape correction factor: 

In most cases for which the above restrictions apply, the difference between the two 

P P 

(1) Calculate the effective thermal conductivity of the material by using the variable 

(2) Calculate an anisotropic correction factor by using the ratio of the conductivities 

(3) Determine the corrected, anisotropic conductivity of the material by multiplying 

This method in essence makes the assumption that the anisotropic behavior of the 

where the numerical subscripts refer to the values obtained from equations (2), (3), and 
(4). Application of this method (eq. (7)) to some experimental data is shown in the sec- 
tion COMPARISON WITH EXPERIMENTAL RESULTS. 

Because the formulation of this method (eq. (7)) is somewhat deductive rather than 
strictly mathematical (i. e. , based on the similarity between the dilute and variable dis- 
persion models), the use of the mixture equation (eq. (5)) to predict the anisotropic be- 
havior of dispersions in this region might be considered. As discussed previously (p. 7), 
this model is not directly applicable unless the particle concentration and elongation are 
such that interaction between particles results. Nevertheless, to ascertain the extent 
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0 20 40 60 80 103 
Particle concentration, volume percent 

(b) Elongated particles; axis ratio, BIA - 4; heat flow 

Figure 6 - Comparison of effective thermal conductivity 
predicted by di f ferent models; conductivity ratio, 62. 

parallel to minor axis. 

ductivity of the dispersion will be changed according to the quantity and characteristics 
of the coating material. Although not presently applicable to the tungsten - water- 
moderated reactor design, a discussion of this model will  be presented herein in the 
event that such a material might be considered at some later date. 

by considering the electric fields induced in a dispersed material by an external field. 
The resulting equation describing the mixed thermal conductivity of spherical particles 
p coated with material c and dispersed in a matrix m is given by 

Kerner (ref. 2, pp. 23 to 25) derived a mathematical solution to the coating problem 

that the mixture model (eq. (5)) differs from 
the suggested model (eq. (7)), a typical set of 
calculations was  performed with both methods. 
The results a r e  shown in figure 6 and indicate 
that under isotropic conditions (spherical par- 
ticles) the difference between the two methods 
is less than 10 percent up to particle concen- 
trations of 40 volume percent (fig. 6(a)). When 
elongation of the particles occurs (fig. 6(b)), 
however, the difference between the two meth- 
ods increases to 75 percent at the same com- 
position (40 volume percent). If in the follow- 
ing sections, agreement is shown to exist be- 
tween the suggested method (eq. (7)) and the 
experimental data, it follows that the use of 
the mixture model (eq. (5)) could not produce 
the same agreement and hence could not be 
used over this same range. 

Coated Particles 

Frequently, the particles in the W-U02 
dispersions are coated with a third material 
before compacting to either preserve the in- 
tegrity of the individual particles or to pre- 
vent direct contact between them during fabri- 
cation. If this third material has properties 
different from those of either of the major 
constituents, the mixed or mean thermal con- 

10 



KmVm + Kpvp~p, m + Kcvcyc, m 

'm + 'pyp, m + ' c ~ c ,  m 
Keff = 

where the ratios of the mean field strengths are 

and 

and where 

v m + v  + v c = l  P 

While this model (eq. (8)) is only applicable to dispersions containing coated spheri- 
cal particles, the same approach is used that was used in equation (7) to obtain a suitable 
correction factor that permits extrapolation to otherwise undefined regions. 

shown that equation (8) reduces to the dilute dispersion equation for spheres (eq. (2)). 
With this, fact in mind the coating correction factor can be defined in the same manner 
that the shape factor was  defined in the preceding section: 

In the limit, that is, as the volume of the coating Vc decreases to zero, it can be 

K(8) Coating correction factor = - 

where the subscripts denote the values obtained by using equatdns (2) anc (8). 
The proposed model (eq. (7)) for anisotropic, coated particles then becomes: 

(9) 
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Dilute Variable Eq. (5) with Dilute 
(eq. (2)) (eq. (3)) function X = 2 (eq. (4)) 

Modified 
variable 
(eq. (7)) 

...... ..... ...... ..... ...... ..... ...... ..... ...... ..... ...... ..... ...... ..... ...... ..... ...... ..... ...... ..... ...... ...... ...... ...... ...... 
~ ...... 

I 

Mixture 
(eq. (5)) 

1 Extreme I 
Mixtures I All cases Moder’ 

distortion distortion 1 Dispersions - Isotropic --+- Anisotropic ___)( 

Figure 7. - Regions of applicability of equations for predicting thermal conductivity 
of tungsten - uranium dioxide dispersions. 

which is the thermal conductivity of the variable dispersion equation (eq. (3)) multiplied 
by the appropriate shape and coating factors. An unusual application of the coating model 
will be presented in the section Additional Data. 

Reg ions of A pp I icabi I ity 

To define exactly where each of the analytical models described in the preceding 
sections is applicable would be impossible because there are several areas where over- 
lapping occurs. The bar graph shown in figure 7 summarizes the various regions of con- 
cern and lists the equation which applies to each. The suggested model (eq. (7)) covers 
the region not presently included by the other equations and is of particular importance 
to the work being done on W-U02 dispersions. Appendix C graphically summarizes the 
variation of the thermal conductivity of W-U02 dispersions obtained by using this model 
as a function of several parameters. 

COMPARISON WITH EXPERIMENTAL RESULTS 

Data Obtained in Tungsten - Water-Moderated Reactor Program 

12 

A recent ser ies  of experiments (ref. 3) was conducted to determine the value of the - 
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Temperature, OR 

Figure 8. - Temperature variation of the thermal conductivity of tungsten. {Data taken from 
refs. 5 to 9 . )  

thermal conductivity of W-U02 dispersions with particle (U02) concentrations up to 
40 volume percent. The flash diffusivity method (appendix B), modified by the use of a 
laser beam instead of a xenon flash lamp (ref. 4), was used to determine the experimen- 
tal values of the thermal conductivity. 

in the section on analytical methods (p. 3), the conductivity of the two materials being 
used must be established (i. e., W and U02). 

Values for the thermal conductivity of tungsten can be found in references 5 to 9. 
The compilation of these data is shown in figure 8 and, except for the room .temperature 
region, indicates good agreement among the various sources. The mean value curve 
superimposed on the data can be represented by 

To compare the results of this experimental study with the analytical model described 

for T <  1600°R (1 14 T Km = 98 - 27.48 - + 5.98 
1 o3 

= 77.345 - - for T >  - 1600°R (1 1b) 
200 

Data on the conductivity of U 0 2  from various sources has already been compiled by 
Cottrell (ref. 10) and Belle (ref. 11). The results are summarized by establishing the 
upper and lower limit lines shown in figure 9. The wide scatter can probably be attri- 
buted to the stoichiometric and density variations of the materials used by the different 
investigators. 

The mean value curve for the conductivity of U02 can be expressed as follows: 

T Kp = 6.022 - 3.033 - + 0.4538 
lo3 

for T - < 3260' R (12a) 
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Temperature, OR 

Figure 9. - Temperature variat ion of thermal conductivity of u ran ium dioxide. 
Limits based o n  data taken from references 10 and 11. 

and 

Kp= 1 . 0  for T > 3260°R (1 2b) 

The mean values for the thermal conductivity of the base materials were used to in- 
vestigate the effective conductivity of dispersions of U02 particles in a tungsten matrix. 
The material used in the experiments (ref. 3) was manufactured by a rolling process; 
thus the particle shape is not strictly an oblate ellipsoid because the elongation in the di- 
rection of rolling is greater than that in the width direction. Visual examination of rep- 
resentative photomicrographs (fig. 5, p. 8) indicate (without an extensive statistical 
study) that the elongation is four to six times the particle thickness in the rolling direc- 
tion and from two to three times the particle thickness in the direction perpendicular to 
the rolling direction. Because the analytical method of Fricke assumes that the two 
major axes are equal, the true solution to the anisotropic case for the above conditions 
is somewhere near the average, o r  a particle having an axis ratio (major to minor axis) 
of 3 or  4. 

the analytical and experimental values. In general, the scatter is compatible with the as- 
sumptions made in selecting the mean-value conductivity of W (fig. 8) and U 0 2  (fig. 9) if 
the potential e r ro r s  in the experiments a r e  considered. Parker  (ref. 4) estimated that 
the flash diffusivity technique yielded results that were within k10 percent of previously 
established values. This agreement seems reasonable when the possible e r r o r s  in the 

The results of the comparison shown in figure 10 indicate good agreement between 
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flow perpendicular to minor axis 
~ Analytical prediction (eq. (7)); heat 

flow parallel to minor axis 

2 
8 - u r a n i u m  dioxide. 
E 

(a) 90 volume percent tungsten - 10 volume percent 

0 1 o o o m m 4 o o o m  

(b) 80 volume percent tungsten - 20 volume percent 
u r a n i u m  dioxide. 

0 1 o 0 o m m 4 o o o 5 o 0 O  
Temperature, OR 

(c) 70 volume percent tungsten - 30 volume percent (d) 60 volume percent tungsten - 40 volume percent 
u r a n i u m  dioxide. u r a n i u m  dioxide. 

Figure 10. - Comparison of experimental and analytical values of thermal conductivity. 

individual variables reported by Taylor (ref. 3), which were later used in the determina- 
tion of the thermal conductivity, are considered: 

Specific heat, C percent e r ror  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i4 
Room temperature density, po (deviation from theoretical), percent error  . . . . . .  i3 
Product, percent e r ror  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i7 

P' 

A potential source of e r ror  in Taylor's work, which is negligible at low tempera- 
tures but increases with temperature, is the use of room temperature dimensions (or 
densities) in the calculation of the thermal diffusivity and thermal conductivity. For the 
samples tested, the linear expansion over the entire range of temperatures was  about 
2 percent (ref. 3). When this factor is neglected, as shown in appendix B, the predicted 
values are high by the same amount. Thus, the scatter in this range of experiments is 
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(b) Voids randomly distributed throughout 
matrix. 

Figure 11. - Comparison of analytical and 
experimental results for tungsten - 
uranium dioxide dispersions. 

at best between 7 and 9 percent with a tendency for 
the experimental values of thermal conductivity to be 
at the higher temperatures. 

Additional Data 

Some additional experimental data for W-U02 
dispersions is available for particle (U02) concen- 
trations of 50 and 70 volume percent and, although 
falling outside the range of interest for the tungsten- 
water-moderated reactor program (ref. l), are com- 
pared to the analytical method described in the ana- 
lytical methods section (p. 3). 

tained by using compacts rather than rolled plates; 
consequently, the shape factor of equation (7) re- 
duces to 1 .0  because the particles are probably not 
distorted. Applying the variable dispersion equa- 
tion (eq. (3)) directly to the two cases results in the 
comparison shown in figure ll(a) as the 100-percent- 
dense line. The predicted values are generally 
higher than the experimental results, which can 

These additional data (refs. 1 2  and 13) were ob- 

probably be attributed to the fact that the 50- and 70-volume-percent-U02 samples were 
respectively only 92. 5 and 94.5 percent dense at room temperature. 

An attempt to include this parameter in the calculations can be made by the use of 
the previously discussed coating model (eq. (10)). If the voids a r e  assumed to be uni- 
formly distributed (i. e. ,  each particle is surrounded by a void) and the fractional ratio 
of the two base materials is assumed to remain constant, an effective volume fraction of 
each species can be determined by multiplying the theoretical volume fraction by the den- 
sity factor Fd. Thus, the effective volume fractions for the 50- and 70-volume-percent- 
U02 cases are as follows: 

(1) 50 W-50 U02 volume percent 

Vfn = V' = (0.925)(0. 50) = 0.4625 
P 

Void = 1.0 - 0.925 = 0.075 

(2) 30 W-70 U02 volume percent 
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. 
V k  = (0.945)(0.30) = 0.2835 

V' = (0.945)(0.70) = 0.6615 
P 

Void = 1 - 0.945 = 0.055 

Assuming that the conductivity of the void is  negligible and substituting these values 
into equation (9) results in an effective coating correction factor that can then be applied 
to the 100-percent-dense values calculated in the preceding paragraphs. The results of 
this correction are also shown in figure 11 and do not seem to improve the e r ror  between 
the predicted and experimental values although the results of both calculations tend to 
bracket the experimental values and are generally within possible experimental error .  
There are several possible reasons, however, that might partially explain this discrep- 
ancy: 

(1) The assumption that the voids are uniformly distributed about each particle may 
be in error .  

(2) There is no assurance that the room-temperature, nontheoretical-density factor 
remains constant as the temperature is increased. For example, i f  a void did surround 
or  contact a UOz particle, the apparent density of the material (related to the theoretical 
value) might increase at the higher temperatures because of the greater expansion char- 
acteristics of the U02 that would tend to displace the void. Of course, the reverse situa- 
tion might occur i f  the void were isolated in the tungsten matrix. 

the experiments (ref. 12) is to first calculate the thermal conductivity of the composite as 
though it were 100 percent dense. The resulting effective conductivity of the 100-percent- 
dense mixture is then used as the matrix conductivity, and the calculation is repeated 
with the particle concentration now corresponding to the measured void fraction of the 
W-U02 compacts with the conductivity of the void assumed to be negligible. Figure ll(b) 
shows the result of such a calculation and indicates much better agreement than that of 
the preceding calculation, which used uniformly distributed voids about each particle 
(fig. ll(a)). A possible explanation for the discrepancy that still exists at higher tem- 
peratures may still follow the reasoning of item 2. 

An alternate method that accounts for the nontheoretical-density characteristics of 

CONCLUDING REMARKS 

There are at least three basic models (ref. 2) that appear to be satisfactory for de- 
termining the thermal conductivity of dispersions: 

(1) The dilute dispersion model (eq. (2)) 
(2) The variable dispersion model (eq. (3)) 
(3) The mixture model (eq. (5)) 
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In addition, anisotropic versions of the dilute dispersion model (eq. (4)) and the mix- 

ture model (eq. (5)) are also available. However, because of the assumptions made in 
the derivation of all these models, the range of applicability of each is limited. 

One region of particular interest in the study of W-U02 dispersions is not covered by 
any of these models. A suggested model for this undefined region is proposed by noting 
the similarity in the results obtained from the dilute dispersion (eq. (2)) and variable dis- 
persion (eq. (3)). The resulting equation for the effective thermal conductivity of W-U02 
dispersions is given by 

Keff (corrected) = ~ ( 3 ) [  z] (7) 

where the subscripts refer to values obtained from equations (2), (3), and (4). This 
method of correcting for anisotropic effects is semiempirical in nature, because there is 
no true mathematical basis for such a procedure. 

The suggested method, compared with experimental data (ref. 3), yields values that 
are within the expected experimental error .  Therefore, this method, subject to the 
following restrictions, is offered to determine the thermal conductivity of anisotropic 
dispersions : 

ume percent. 
1. The particle concentration is greater than 10 volume percent and less than 40 vol- 

2. The thermal conductivity of the matrix is greater than that of the particle (i. e.,  

Because the amount of experimental data currently available on W-U02 dispersions 
K,/Kp> 1.0). 

is quite limited, the suggested method should be compared to the results of future experi- 
ments to extend the range and/or remove the restrictions currently imposed. 

tor for the variable dispersion case (eq. (7)), a coating correction factor, applicable 
when the particles a r e  coated with a third material ( e .  g., niobium), can be defined so 
that the thermal conductivity is given by 

With an argument similar to  that used in formulating the anisotropic correction fac- 

where the subscripts refer to the values obtained from the respective equations. While 
this equation is not presently applicable to the tungsten - water-moderated concept, it is 
presented for possible future reference. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, May 11, -1965. 
'. 
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APPENDIX A 

EQUATIONS USED TO DETERMINE THERMAL CONDUCTIVITY 

OF ANISOTROPIC DIS PERS IONS 

The original work done by Fricke, a biophysicist working on the electrical behavior 
of blood, was based on the random orientation of a dilute dispersion of ellipsoids. Power 
(ref. 2) shows how this work can be extended to two-directional preferred orientation. 
The result of this analysis is shown in the following equations: 

Equations Used to Determine the Effective Conductivity of Anisotropic Dispersions 

Dilute dispersion model. - 

Keff R(l  + X V $  +X(1 - Vp) - 

(Note that this is an alternate form of equation (4). ) 
Mixture model. - 

where\ 

and 
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Values of P for Various Conditions 

For the A axis oriented parallel to the heat flux. - 

R -  1 
1 + (R - 1)(1 - M) 

P =  

For the A axis oriented perpendicular to the heat flux. - 

R -  1 P =  
M 1 +(R- 1)- 
2 

For random orientation. - 

B=- R -  1 c 2  + 1 1 
J M 11 + (R- 1)- 

2 
1 + (R - 1)(1 - M) 

where for A < B 

A 
B 

COS e = - 

andfor A > B  

M -  -1(")1 ( l + s i n ( n )  
1 - sin cp sin cp sin cp 

B cos cp = -  
A 

The variation of M, P ,  and X is shown in figure 12 for several conditions. 
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APPENDIX B 

. 
* 

BRIEF DISCUSSION OF FLASH DIFFUSIVITY METHOD OF 

MEASURING THERMAL PROPERTIES OF SOLIDS 

Included in this report is a comparison of the predicted values obtained with the sug- 
gested analytical model with experimental data (ref. 3) obtained by using a modified flash 
diffusivity method (ref. 4). To familiarize the reader with this method, a brief discus- 
sion of the procedures and pertinent equations used in the analysis is given. 

In this method, a sample with initial thickness Lo and face area So is initially 
brought from ambient conditions To to an elevated temperature T1 by the use of auxil- 
iary heaters (see fig. 13). From this new steady-state point, a small transient is in- 
duced by pulsing the front face of the specimen with a laser beam. 
tic temperature rise of the rear surface of the sample, the thermal diffusivity, the heat 
capacity, and finally the thermal conductivity of the material can be determined. 

be expressed as 

From the characteris- 

Parker, et al. (ref. 4), shows that the thermal diffusivity under these conditions can 

1.38 L2 
CYT = 

,<Temperature variation 
f ron t  face 

_ _ _ _ _ _ ~ _  
( T i  + T$/2 

Auxi l iary 

I Ambient / 

Time 

Figure 13. - Schematic time-temperature variation d u r i n g  flash 
dif fusivi ty method of obtaining thermal conductivity. 

where T is the time necessary for the r ea r  
surface to reach half the temperature r i se  
from TI to T2. This method was used to 
predict the thermal diffusivity of Armco iron, 
which has fairly well-known thermal charac- 
teristics. The results (ref. 3) verify the 
validity of this procedure (eq. (Bl)) .  Some 
question exists, however, as to the proper 
value of thickness that should be used if  the 
expansion of the material is significant be- 
tween the ambient and the testing tempera- 
tur e. 

ature at which the above diffusivity is actu- 
ally measured is equal to the steady-state 
value T I  plus a mean temperature r i s e  that 

Parker  shows that the effective temper- 
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. 
can be approximated by 

The factor 1.6 is greater than unity because the expression is a time-averaged value of 
the temperature rise for the entire sample. The front face of the sample has an initially 
larger value T3 relative to the rear face (fig. 7, p. 13). 

For most of the experimental measurements (ref. 3), the transient temperature rise 
AT was small compared to the absolute temperature level at the start of the transient. 
For all practical purposes, the effective temperature and the steady-state temperature 
T1 are nearly equal for this series of experiments. 

by 
From the basic definition of the thermal diffusivity, the thermal conductivity is given 

and, from the conservation of energy, a relation between the product of the density and 
specific heat and the energy emitted by the laser is obtained (ref. 4) 

E cpcp’ =- 
T LSAT 

When the equations (Bl) and (B4) are substituted into the basic definition (eq. (B3)), 
the required expression for the thermal conductivity is obtained 

For materials with isotropic expansion characteristics, the change in length with 
temperature is related directly to  the linear coefficient of expansion, while the change in 
area and volume are respectively related to the square and cube of the same constant. 
The ratio L/S evaluated at temperature T can thus be expressed as 

where E is the linear elongation between the ambient and the testing conditions. 
Substituting this relation into equation (B5a) yields the following expression for ob- 
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. 
taining the thermal conductivity by the flash diffusivity method 

KT =(Y8 TI T A T  E)(:)o ( - )  
In lieu of obtaining the specific heat from the conservation of energy (eq. (B4)), 

Taylor (ref. 3) used previously established values for the specific heat of the two compo- 
nents and then determined the properly weighted specific heat of the composite. The 
e r ror  associated with the variable C obtained in this manner was estimated (ref. 3) to 
be *4 percent. An alternate form of equation (B5b) can be obtained for this case. Com- 
bining equations (Bl) and (B3) and noting that 

P 

yield the following relation: 

38 L%O(cp), 
IL= 

2 .I- 
T T ( 1  + €) 

In essence, both forms of equation (B5) indicate that the thermal conductivity ob- 
tained by the flash diffusivity method should be corrected by the cube root of the density 
change to account for  the expansion characteristics of the material. When the difference 
between the testing temperature and the ambient temperature is small, and/or the ther- 
mal coefficient of expansion is negligible, sufficient accuracy can be obtained by using 
the room temperature values of L and S and by neglecting the ratio involving the ex- 
pansion term. This condition, however, is not always true, and the expansion factor 
may become significant when the testing temperatures are as high as they a r e  in the 
W-U02 experiments. 
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APPENDIX C 

VARIATION OF TH RMAL CONDUCTIVITY OF TUNG TEN - URANIUM DIOXIDE 

DISPERSIONS A S  FUNCTION OF SEVERAL PARAMETERS 

Figures 14 to 18 show a summary of the thermal conductivity behavior of W-U02 dis- 
persions. These values were calculated by using the suggested method described in the 
text (eq. (7)) and by utilizing the mean value thermal conductivities of the two base mate- 
rials (figs. 8,  p. 13 and 9, p. 14). Except for figure 18, a l l  of the cases were calculated 
by using oblate ellipsoids where axis A < B = C. 

(a) 90 volume percent tungsten - 10 volume percent 
c 
> uranium dioxide. ._ ._ 

(b) 80 volume percent tungsten - 20 volume percent 
uranium dioxide. 

50 

40 

30 

20 

10 
0 

Temperature, OR 

(c) 70 volume percent tungsten - 30 volume percent (d) 60 volume percent tungsten - 40 volume percent 
uranium dioxide. uranium dioxide. 

Figure14. - Effect of particle elongation on thermal conductivity of tungsten - uranium dioxide dispersions. 
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0 10 20 30 40 50 60 
Particle concentration, volume percent 

Figure 15. - Effect of temperature o n  the  thermal conductivity of 
tungsten - u r a n i u m  dioxide dispersions for spherical particles. 

mL 11 1 1 I 1 I 1 I I 

Temperature, OR 

Figure 16. - Effect of particle concentrat ion o n  thermal 

0 1000 2OOo 3000 4MH) 5000 

conductivity of tungsten - u r a n i u m  dioxide dispersions 
for spherical particles. 
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(a) Heat flow parallel to axis A. 

(b) Heat flow perpendicular to axis A. 

Figure 17. - Effect of axis rat io on thermal conductivi ty of tungsten - 
u ran ium dioxide dispersions; temperature, 3oOo0 R. 

I I I I I I I I I I I  
Ellipsoidal Orientat ion of A axis 

shape to heat flow 

70 

60 
S 

1 3 
- 
s50 
.- 25 
2 4 0  

- 3 0  E 

5 .- - 
FI c 
0 u - 

al 
S + 

20 
0 5 10 15 20 25 u1 35 40 

Part icle concentration, volume percent 

Figure 18. - Effect of particle shape and orientat ion on  thermal conduc- 
t iv i ty  of tungsten - u ran ium dioxide dispersions; temperature, 3oOo0 R; 
axis ratio, 3. 
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APPENDIX D 

SYMBOLS 

A, B, c 

cP 

E 

Fd 
K 

L 

M 

Q 

R 

S 

T 

AT 

v 
X 

Q 

28 

axis of ellipsoid, f t  

specific heat at constant pres- 
sure, Btu/(lb) (OR) 

energy emitted by laser, Btu 

fraction of theoretical density 

thermal conductivity, 
Btu/(hr) (ft) (OR) 

thickness of sample, f t  

function defined in appendix A 

heat generation rate, 
Btu/(hr) (cu ft) 

ratios of thermal conductivi- 
ties, Kp/G 

face area of sample, sq f t  

temperature, OR 

temperature difference, OR 

volume fraction 

function defined by equation (6) 

thermal diffusivity, sq ft/hr 

P 

Y 
E elongation, ft /f t  

8 

P density, lb/cu ft 

r time increment, hr 

cp 

S b s c r  ipts : 

C condition in the coating 

eff 

m condition in the matrix 

max refers  to maximum value 

P condition in the particle 

T evaluated at temperature T 

W condition at the wall  

0 refers to initial conditions 

1 

2 

function defined by equation (6) 

ratio of mean field strengths 

angle defined in appendix A 

angle defined in appendix A 

effective value of the mixture 

refers to conditions at point (1) 

refers to conditions at point (2) 
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